Discriminant WSRC for Large-Scale Plant Species Recognition

نویسندگان

  • Shanwen Zhang
  • Chuanlei Zhang
  • Yihai Zhu
  • Zhu-Hong You
چکیده

In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Jaccard distance based weighted sparse representation for coarse-to-fine plant species recognition

Leaf based plant species recognition plays an important role in ecological protection, however its application to large and modern leaf databases has been a long-standing obstacle due to the computational cost and feasibility. Recognizing such limitations, we propose a Jaccard distance based sparse representation (JDSR) method which adopts a two-stage, coarse to fine strategy for plant species ...

متن کامل

بازشناسی جلوه‌های هیجانی با استفاده از تحلیل تفکیک پذیری مبتنی بر خوشه بندی چهره

Improvement of Facial expression recognition is aim of proposed method. This is a new formulation to the linear discriminant analysis. In the new formulation within-class and between-class covariance matrix are estimated on the each cluster and in the test phase new samples are mapped to the subspace that is related to the cluster of them. At the first we addressed clustering analysis of faces ...

متن کامل

A New Weighted Sparse Representation Based on MSLBP and Its Application to Face Recognition

Face recognition via sparse representation-based classification has received more and more attention in recent years. This approach has achieved state-of-the-art results, which outperforms traditional methods, especially when face image pixels are corrupted or occluded. In this paper, we propose a new weighted sparse representation method called WSRC-MSLBP which utilizes the multi-scale LBP (MS...

متن کامل

Comparing Discriminant Analysis, Ecological Niche Factor Analysis and Logistic Regression Methods for Geographic Distribution Modelling of Eurotia ceratoides (L.) C. A. Mey

Eurotia ceratoides (L.) C. A. Mey is an important plant species in semi-arid landsin Iran. New approaches are required to determine the distribution of this plant species. Forthis reason, geographical distributions of Eurotia ceratoides were assessed using threedifferent models including: Multiple Discriminant Analysis (MDA), Ecological Niche FactorAnalysis (ENFA) and Logistic Regression (LR). ...

متن کامل

Feature decision-making ant colony optimization system for an automated recognition of plant species

In the present paper, an expert system for automatic recognition of different plant species through their leaf images is investigated by employing the ant colony optimization (ACO) as a feature decision-making algorithm. The ACO algorithm is employed to investigate inside the feature search space in order to obtain the best discriminant features for the recognition of individual species. In ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017